I-ADOPT: A systematic Way to Represent Variables

Barbara Magagna, GO FAIR Foundation
George Alter, University of Michigan, Institute for Social Research
Fran Cotton, INSEE
Flavio Rizzolo, Statistics Canada
Steven McEachern, Australian National University
I-ADOPT Framework – A Semantic Broker

I-ADOPT provides a **standardized descriptions for variables** and supports **interoperability** between existing terminologies by

- Enabling **mappings** between variable descriptions **across** terminologies
- Requiring **no change to existing structures**
- Adding rich (**human-readable and machine-actionable**) descriptions with **qualified references**
Descriptions of Properties
Contextualised properties -> observable properties
-> I-ADOPT variables
Contextualised properties -> observable properties
-> I-ADOPT variables

Diagram:
- Property
 - needs context
- I-ADOPT variable
 - consists of
I-ADOPT variable consists of various description components

- Property
- Description component
- Description component
- Description component
- Description component
The I-ADOPT Ontology

https://w3id.org/iadopt

Examples of components (not exhaustive):

- Generalized
- Constraint
- Entity
- Property
- hasConstraint
- hasObjectOfInterest
- hasMatrix
- hasContextObject
- hasProperty
- constrains

- https://github.com/i-adopt
- DOI: 10.15497/RDA00071
I-ADOPT ontology explained

I-ADOPT variable

hasContextObject

hasMatrix

hasProperty

hasObjectOfInterest

Property

Entity

Entity

Entity

Entity
I-ADOPT ontology simplified explanation
I-ADOPT ontology simplified explanation – minimal description

I-ADOPT variable

Property

Object Of Interest

has

has
I-ADOPT ontology simplified explanation – extended description
I-ADOPT (simplified) in an OWL ontology

- Property
 - has
 - 1

- Object Of Interest
 - has
 - 1

- I-ADOPT variable
 - has
 - 0..n

- Context Object
 - has
 - 0..n

- Constraint
 - constrains

- Matrix
 - constrains
 - 0..1

COSCMOS Conference 2024, April 11, 2024, I-ADOPT, cite as: https://osf.io/ce9gv
RDA I-ADOPT recommendations (DOI: 10.15497/RDA00071)

1. Descriptions should be human and machine-readable
 Data creators and data curators or data publishers should describe the variable(s) of their datasets in a human- and machine-readable format.

2. Descriptions should be explicit and sufficient
 The variable description should contain sufficient information so that the data can be re-used with minimum reliance on free-text documentation.

3. Use of semantic artefacts
 The description should use FAIR semantic artefacts (e.g., controlled vocabularies or ontological relationships) and be compatible with Linked Data.

4. Use of I-ADOPT ontology
 The description should follow a decomposition approach consistent with the classes and relations defined in the I-ADOPT ontology.

5. Reuse of I-ADOPT aligned terminology
 Reuse existing FAIR terminologies that are aligned with the I-ADOPT Framework. If no such terminology is available, you may either extend the existing variable description or create a new variable following the I-ADOPT framework.
Object of interest: *COVID-19 PCR test*

Property: date

Constraint: *most recent* (constrains *COVID-10 PRC test*)

Constraint: *performed by a certified laboratory* (constrains *COVID-10 PRC test*)
I-ADOPT example:
Number of nights in a 3-star hotel near the seashore

Object of interest: guest nights
Property: count
Matrix: hotel
Constraint: 3-star (constrains hotel)
Constraint: near the seashore (constrains hotel)
Disambiguate variable descriptions using I-ADOPT
3 questions about feeling nervous

Consider these three questions:

Q1: In the past 30 days, did you ever feel nervous?
Q2: In the past 30 days, how often did you feel nervous?
Q3: How many times did you have feelings of nervousness in the last month?
Disambiguate variable descriptions using I-ADOPT
3 questions about feeling nervous
Outlook: Developing I-ADOPT services for reuse by researchers

Based on:

- User input (free text description) and specify FSRs (vocabularies) chosen by the research community
- Named Entity Recognition (NER) and/or
- Large Language Models (LLM)
 - both require large sets of pre-modelled I-ADOPT variables (training set)

Results into:

- Decomposition in atomic parts based on NER
- Arrangement of parts in I-ADOPT roles based on Variable Design Patterns